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Abstract

Active inference provides a powerful framework for understanding how agents
perceive, learn, and act by maintaining an internal model of the world [1, 2]. How-
ever, most existing implementations rely on generative models that are designed for
specific tasks or domains [3, 4]. These task specific models limit the ability of agents
to generalise, adapt to new environments, or scale beyond narrow applications.

Taking inspiration from the human brain, which appears to solve the problem
of generalisation through a combination of modularity, hierarchy, and embodiment
[5, 6], we propose a list of core ingredients. We outline seven core components
that we believe are essential for a scalable and reusable generative model, including
compositional structure, temporal abstraction, attention and precision, meta-level
learning, separation of self and world, and mechanisms for learning model structure
itself.

The discretisation of these core components hints at the necessity for a series of
interconnected generative models organised on a graph-like structure with (some)
shared variables, states and parameters, similar to the functional specialisation,
integration, and connectivity of the brain [7]. We propose that these components
offer a blueprint for constructing intelligent systems that can generalise across tasks
and domains.

1 Introduction

Active inference offers a unifying framework for perception, action, and learning, grounded
in the idea that intelligent agents maintain an internal model of the world [1, 8]. This in-
ternal, generative model allows agents to predict the sensory consequences of their actions,
infer the hidden causes of observations, and select behaviours that minimise uncertainty
or surprise [9]. Moreover, it provides a principled way to think about how agents come
to understand and interact with their environment, by continuously updating beliefs and
acting to fulfil prior expectations [10].

In recent years, active inference has shown promise in a variety of domains, from
sensorimotor control to decision making and simulated exploration [4, 11, 12]. However,
the generative models used in these applications are typically hand crafted and tightly
coupled to specific tasks. For example, controlling a robotic limb, navigating a 2D grid,
or playing a video game, each implementation tends to build a bespoke model tailored
to that particular setting.

While effective in narrow contexts, this approach poses a major obstacle to scaling
active inference toward more general forms of intelligence. A truly adaptive agent needs
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to be able to reuse and repurpose its internal model across a variety of domains; for
example, environments or goals, without needing a complete redesign for each new task.
This leads us to a central, yet still largely open question: What does a general purpose
generative model actually look like?

This question is especially relevant in the context of artificial general intelligence
(AGI). If active inference is to serve as a foundation for AGI, it must support agents that
can generalise, not just in policy or behaviour, but in the structure of their internal models
[3, 13]. Moving beyond task specific models requires a shift toward a more principled,
reusable (or adaptive) architecture.

In this paper, we explore this challenge through a neuro-inspired lens. Taking an
anthropomorphic approach, we draw on principles from systems neuroscience and theo-
retical models of cortical function [6, 7] to outline seven core components that we believe
are necessary for a general-purpose generative model. These include modularity, tempo-
ral hierarchy, compositional structure, precision weighted attention, meta -structuring,
separation of world and self models, and structure-learning mechanisms.

Together, these ingredients form the backbone of a flexible and scalable generative
model capable of supporting intelligent behaviour across tasks and domains.

2 What does general-purpose mean in an active in-

ference context?

Within the active inference framework, agents rely on internal generative models to pre-
dict sensory input, infer hidden causes (...it’s wet out, did it rain? ), and guide action
(...I should get the washing in) [1, 8]. In practice, however, these models are usually con-
structed for a single, well-defined task, often with fixed states, modalities, and parameters
[3, 4].

In typical implementations, the generative model is constructed as a non-linear state-
space system with fixed states and parameters:

ẋ(t) = f(x(t),u(t),θ) + ω(t) (1)

y(t) = g(x(t),θ) + ν(t) (2)

Here, x(t) denotes the latent state vector, u(t) the control input, and θ the parameters
of the model. The function f describes the system dynamics and g maps those latent
states to observations y(t). Process noise ω(t) and observation noise ν(t) represent
uncertainty.

In most applications, the structure of f and g, including the dimensionality of x, the
number and type of parameters θ, and the form of the nonlinearities, is handcrafted for
the task at hand [14, 15]. This constrains generalisation, as the model cannot adapt to
new tasks or environments without structural redesign.

By contrast, a general-purpose generative model should allow for flexible inference
and control across multiple domains and task structures, without requiring a complete
redesign. Rather than being tied to a specific environment or objective, such a model
should provide a reusable substrate that supports:

• Cross-domain reuse: The ability to operate across different sensory modalities,
state spaces, or environments without needing (manual) structural redesign [12].
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• Compositional generalisation: The ability to recombine learned components
(e.g., objects, causes, policies) to solve new tasks [16, 13].

• Context sensitivity: The ability to flexibly adapt inference and action depending
on goals or environmental structure [17].

• Structural plasticity: The ability to extend or revise the model over time, learn-
ing not just new parameters, but adapting structure [18].

In other words, generality in this context does not imply a universal or fully agnostic
model, but one that supports adaptive reuse, incremental learning, and principled com-
position of beliefs across changing settings. This requires generative architectures that
are not monolithic but modular, dynamically assembled, and context-aware [19].

3 Principles from the brain: modularity, hierarchy,

and embodiment

What kinds of architectural principles would be necessary for a general-purpose generative
model? In this section, we take inspiration from the brain, which provides a biologically
grounded example of a system capable of adaptive, context-sensitive inference across
tasks, timescales, and sensory modalities [6, 20].

The human brain is not a monolithic processor, but modular, with distinct and in-
teracting regions specialised for sensory, motor, interoceptive, and cognitive functions
[21, 22]. It is also hierarchical, with fast dynamics and low-level prediction errors flowing
upward, and slower, more abstract beliefs and goals flowing downward [23, 24]. More-
over, the brain is embodied; that is, tightly coupled to the body and environment, and
constantly learning and updating its internal model through action [25, 26].

We argue that these properties are not incidental but essential for general intelligence.
They provide scaffolding for the kinds of structural priors, abstraction, and reuse that
general-purpose generative models require. Drawing on this view, we propose seven inter-
connected components (Figure 1) that we believe form the basis of a reusable architecture
for active inference agents.

3.1 Modularity and factorisation

A general-purpose generative model should not be a single monolithic structure, but
rather a collection of interacting modules; each responsible for distinct but complemen-
tary functions, such as perception, planning, interoception, or memory. These modules
mirror the functional specialisation observed in the brain [7], where areas like visual cor-
tex, motor cortex, and prefrontal cortex each maintain their own partial models of the
world, yet remain deeply interconnected. Crucially, these modules do not operate in
isolation but share some latent states and parameters, allowing for joint inference and
mutual constraint, while still retaining local autonomy. This factorised structure pro-
motes scalability, reuse, and robustness, enabling submodels to be adapted or replaced
without re-engineering the whole system.
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Figure 1: The seven interrelated ingredients of a general-purpose generative model for
Active Inference. Each node is colour-coded by functional domain: Architecture (green),
Learning (red), Representation (yellow), and Perception (purple). Edges indicate con-
ceptual and functional dependencies between components, many of which may involve
shared parameters (e.g. precision estimates, modular priors) or shared hidden states (e.g.
beliefs about temporal structure, agency, or context). These shared elements reflect the
deep interdependence of mechanisms required for flexible, scalable, and adaptive infer-
ence.

3.2 Hierarchical temporal abstraction

A second key principle is hierarchy; specifically, hierarchical organisation over time. The
brain maintains generative models operating across nested temporal scales, from fast
sensory fluctuations to slowly evolving beliefs about context, goals, and self [27, 28]. In
a general-purpose architecture, this translates to stacked generative models, each cap-
turing dynamics at a different timescale. Lower levels handle rapid sensorimotor loops,
while higher levels encode temporally extended policies, environmental contingencies, or
abstract narratives. This organisation supports flexible planning and allows agents to
generalise behaviours across contexts or environments.

3.3 Compositionality and contextuality

A third ingredient is compositionality; that is, the ability to construct complex generative
predictions by combining simpler, reusable components. Rather than learning entirely
new models for each environment or task, a general-purpose architecture should represent
entities, events, and relationships as modular elements that can be recombined across
contexts [16]. This compositional structure supports powerful inductive generalisation,
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Component Description

Modularity and factorisa-
tion

Independent modules for sensory, motor, planning,
etc., that share latent variables or pass messages

Hierarchical temporal ab-
straction

Layered generative models operating across fast-to-
slow temporal scales

Compositionality and
contextuality

Reusable representations of entities and relations,
modulated or reconfigured based on context

Precision-weighting and
attentional routing

Dynamic allocation of computational resources via
precision estimates that prioritise relevant inference

Meta-learning or meta-
structuring

Adaptive learning of the model structure and priors
themselves, not just parameters

Separation of world
model and self model

Distinct representations for internal (e.g., propriocep-
tive) and external (e.g., exteroceptive) causes, en-
abling simulation and planning

Structure learning mech-
anisms

Mechanisms for expanding, pruning, or reorganising
model components based on uncertainty or Bayesian
evidence

Table 1: Seven key components of a general-purpose generative model for active inference.

such as inferring unseen combinations of familiar parts [13]. However, compositionality
must be complemented by contextuality; the capacity to modulate, gate, or reconfigure
submodels based on situational demands [29]. Together, these features enable flexible
reuse without rigid or fixed coupling, and support the emergence of structured, context-
sensitive behaviour.

4 Designing modules

Designing a generative model that supports general intelligence requires more than just
modularity and hierarchy. It also involves embedding mechanisms that allow the model to
dynamically allocate resources, adapt its internal structure, and distinguish between self-
generated and external signals. In this section, we highlight three additional components
that make such a system flexible, efficient, and capable of continual learning.

4.1 Precision-weighting and attention

To operate efficiently in complex environments, a general-purpose generative model must
be able to selectively attend to relevant information. This is achieved through precision-
weighting, which dynamically modulates the influence of prediction errors based on their
estimated reliability [30]. In the brain, this is thought to correspond to attentional mech-
anisms that amplify or suppress signals across cortical hierarchies [28, 31]. Within a
modular architecture, precision estimates help steer inference toward the most informa-
tive states or modalities, allowing the system to flexibly prioritise different submodels,
depending on context.
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4.2 Meta-learning or meta-structuring

Intelligent agents must not only learn the parameters of their generative models, but also
learn how to learn; that is, how to structure their own models over time. Meta-learning
provides a way for agents to discover priors over model architecture, update hyperparam-
eters governing learning rates or structure, and adaptively modify their inference routines
based on experience [32, 33]. In neuro-inspired terms, this might correspond to hyper-
models or slow changing cortical systems that shape how local circuits adapt [14]. Within
a reusable architecture, meta-learning allows the agent to refine its own inductive biases
and accumulate structured knowledge over time [34].

4.3 Separation of world model and self model

Another key requirement is the ability to distinguish between the causes of sensory input
that originate in the external world (exogenous) and those generated by the agent itself
(endogenous). This separation of world and self models enables internal simulation; the
capacity to imagine actions before executing them, predict their consequences, and differ-
entiate self-generated signals from those arising externally [25]. The brain achieves this
through specialised pathways for proprioception and interoception [35]. In a general pur-
pose generative model, similar distinctions are necessary for modelling embodied agents
that learn from experience while maintaining an integrated sense of self. This division
supports planning, credit assignment, and the development of counterfactual reasoning
[36].

5 Learning structure vs learning parameters

Most machine learning methods focus on adjusting parameters within a fixed model ar-
chitecture. This includes updating weights, biases, or transition probabilities; typically
under the assumption that the structure of the model is already known and correct. How-
ever, both biological and artificial general intelligence demand a more flexible approach.
A truly adaptive agent must not only update beliefs about hidden states and parameters,
but also infer the structure of its internal model [37, 13].

Structure-learning involves discovering which variables should be included in the
model, how they are connected, and how new components can be integrated or redundant
ones removed. This is far more challenging than parameter learning, both conceptually
and mathematically. It requires evaluating different model topologies, often with com-
binatorially large search spaces and sparse evidence [38]. In active inference, this means
inferring not just the values of existing variables, but what variables should exist in the
first place.

This distinction is visualised in Figure 1, where we propose seven high-level generative
modules as key ingredients for general intelligence. The black lines in the diagram repre-
sent an initial assumed pattern of connectivity. Learning parameters would correspond
to adjusting the strength or precision of these connections. In contrast, structure learning
asks a deeper question: which connections should exist at all? Which modules should
be linked? Which should remain conditionally independent? How can new modules be
added without breaking the coherence of the system? Structure learning is thus a kind
of meta-inference; not just learning within a model, but learning the model itself.
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Techniques such as Bayesian model comparison, model averaging, or graph-based
priors can support this process [39, 40]. In a modular architecture, structure learning
provides the glue that links new components into existing systems while maintaining
coherence, scalability, and adaptability over time.

6 Integration with existing neuro-AI work

The ideas proposed here resonate with several strands of ongoing work in neuro-AI,
particularly those that aim to move beyond narrow, domain-specific tasks and hand-
engineered architectures. In the active inference literature, recent models have begun
to incorporate deep temporal hierarchies, modular structures, and even basic forms of
structure learning [5, 13]. These efforts reflect a growing recognition that flexibility and
reuse require generative models that are compositional, adaptive, and embedded.

The emphasis on modularity, temporal abstraction, and meta-structuring aligns with
proposals for agents that learn causal structure through experience [13]. In parallel, the
Free Energy Principle has been increasingly used to frame the functional segregation and
integration of brain regions [28], offering a theoretical basis for the kind of architecture
envisioned here.

Outside of active inference, related ideas are emerging across domains: object-orientated
reinforcement learning [41, 42], graph-based cognitive architectures [43], and systems neu-
roscience approaches to cortical computation [44, 45] all converge on similar principles.
What unites these perspectives is the recognition that intelligent behaviour depends not
just on data or training, but on structured, interpretable models of the world that can
be reused across time and contexts.

By formalising these insights in terms of interconnected generative models, the aim is
to contribute a blueprint that unifies these efforts under the active inference framework.

7 Research directions and open challenges

This paper outlines a conceptual architecture for general-purpose generative models in-
spired by the structure and function of the brain. While we believe the seven components
described here are necessary, steps remain in turning this blueprint into a working system.

First, the space of possible structures is vast. Learning which modules to include,
how to connect them, and when to activate them presents significant computational and
theoretical challenges. Although there has been progress in structure learning and neural
architecture research [37, 46], most approaches remain brittle or task-specific.

Second, there are very few benchmarks for evaluating general-purpose generative mod-
els. Unlike supervised learning tasks, ”generalisability” is hard to quantify. Progress may
require developing environments where agents must flexibly reuse generative components,
adapt to changing goals, and transfer knowledge between domains [16].

Third, implementing meta-structuring; where the agent not only learns parameters
but learns how to modify its own architecture, remains largely unexplored in active
inference. This is both a technical and philosophical challenge, raising questions about
self-modelling, plasticity, and control [47].

Finally, scaling these ideas will require careful trade-offs between tractability and flex-
ibility. Structure learning must not lead to combinatorial explosion, and attention must
be guided without overwhelming the agent with uncertainty. Despite these obstacles, the
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principles outlined here offer a roadmap by drawing on the brain’s solutions: modularity,
abstraction, embodiment, and reuse.
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Rémi Munos, Charles Blundell, Dharshan Kumaran, and Matthew Botvinick. Learn-
ing to reinforcement learn. arXiv preprint arXiv:1611.05763, 2016.

[33] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter
Abbeel. Rl2: Fast reinforcement learning via slow reinforcement learning. arXiv
preprint arXiv:1611.02779, 2016.

[34] Ron Amit and Ron Meir. Meta-learning by adjusting priors based on extended
pac-bayes theory. arXiv preprint arXiv:1711.01244 [stat.ML], 2017. URL https:

//arxiv.org/abs/1711.01244. Accepted to ICML 2018.

[35] Anil K Seth. Interoceptive inference, emotion, and the embodied self. Trends in
Cognitive Sciences, 17(11):565–573, 2013.

[36] Micah Allen and Karl J. Friston. From cognitivism to autopoiesis: towards a compu-
tational framework for the embodied mind. Synthese, 195(6):2459–2482, 2018. doi:
10.1007/s11229-016-1288-5. Epub 2016 Dec 22.

[37] Samuel H. Rudy and Themistoklis P. Sapsis. Sparse methods for automatic relevance
determination. Physica D: Nonlinear Phenomena, 418:132843, 2021. doi: 10.1016/
j.physd.2021.132843.

[38] Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, and Noah D Goodman.
How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022):
1279–1285, 2011.

[39] Will D Penny, Klaas E Stephan, Jean Daunizeau, Maria J Rosa, Karl J Friston,
Timothy M Schofield, and Alexander P Leff. Comparing families of dynamic causal
models. PLOS Computational Biology, 6(3):e1000709, 2010.

[40] Matthew James Beal. Variational algorithms for approximate Bayesian inference.
PhD thesis, University of Cambridge, 2003.

[41] Carlos Diuk, Andrew Cohen, and Michael L Littman. An object-oriented represen-
tation for efficient reinforcement learning. In Proceedings of the 25th International
Conference on Machine Learning, pages 240–247, 2008.

10

https://arxiv.org/abs/1711.01244
https://arxiv.org/abs/1711.01244


[42] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor
Babuschkin, Karl Tuyls, Dan Toyama, Alexander de G. Matthews, Martin Tan,
et al. Relational deep reinforcement learning. arXiv preprint arXiv:1806.01830,
2018.

[43] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vini-
cius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam San-
toro, Ryan Faulkner, et al. Relational inductive biases, deep learning, and graph
networks. arXiv preprint arXiv:1806.01261, 2018.

[44] Daniel LK Yamins and James J DiCarlo. Using goal-driven deep learning models to
understand sensory cortex. Nature Neuroscience, 19(3):356–365, 2016.

[45] Demis Hassabis, Dharshan Kumaran, Christopher Summerfield, and Matthew
Botvinick. Neuroscience-inspired artificial intelligence. Neuron, 95(2):245–258, 2017.

[46] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search:
A survey. Journal of Machine Learning Research, 20(55):1–21, 2019.

[47] Anil K. Seth, Tomasz Korbak, and Alexander Tschantz. A continuity of markov
blanket interpretations under the free-energy principle. Behavioral and Brain Sci-
ences, 45, 2022.

11


	Introduction
	What does general-purpose mean in an active inference context?
	Principles from the brain: modularity, hierarchy, and embodiment
	Modularity and factorisation
	Hierarchical temporal abstraction
	Compositionality and contextuality

	Designing modules
	Precision-weighting and attention
	Meta-learning or meta-structuring
	Separation of world model and self model

	Learning structure vs learning parameters
	Integration with existing neuro-AI work
	Research directions and open challenges

